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Received 10 January 1984, in final form I 1  July 1984 

Abstract. The Onsager-Machlup approximation for a discrete Markov chain, representing 
multistationary state transitions, is formulated in the limit of small thermal fluctuations. 
The principle of minimal correlational entropy is used to determine the state in which the 
invariant probability measure tends to concentrate as the intensity of the fluctuations tends 
to zero. It is this principle, rather than that of maximum entropy, which is valid in open 
systems without microscopic reversibility. In systems characterised by microscopic reversi- 
bility, the two principles give the same predictions. The principle of minimal correlational 
entropy is shown to be the statistical analogue of the thermodynamic principle of least 
dissipation of energy. The principle of minimal correlational entropy is applied to the 
problem of stochastic exit from domains enclosing multistationary states; it reduces to a 
minimum entropy difference principle for systems satisfying microscopic reversibility. 

1. Introduction 

Thermodynamic evolutionary criteria are couched in the concavity of thermodynamic 
potentials. The second law asserts that the entropy of an isolated system will tend to 
increase in time and the final state of thermodynamic equilibrium possesses maximum 
entropy. However, in the absence of the ‘fourth law’, which affirms that the entropy 
is extensive, the principle that ‘states of maximum entropy as obtained by the use of 
calculus are stable equilibrium states of the system’ also fails (Landsberg and Tranah 
1980a). Landsberg and Tranah (1980b) have further shown that it is the superadditive, 
rather than the concave, property of the entropy which is the essence of the second 
law. In particular, positive specific heats are no longer necessary for a stable equilibrium 
state (Landsberg and Tranah 1980b). 

The situation is further aggravated far from equilibrium where a multiplicity of 
non-equilibrium stationary states can appear for a given non-equilibrium constraint 
as opposed to the equilibrium transformation from a more to a less constrained state 
by the removal of a partition. The most obvious extension would be to carry over a 
maximum entropy principle in a more general non-equilibrium setting. Then, one could 
associate the most thermodynamically stable state with that non-equilibrium state 
which maximises the entropy subject to the given non-equilibrium constraint that 
prevents the system from relaxing back to equilibrium. The main result of our paper 
will be to show that this conjecture is, in general, incorrect. 

t Work supported in part by a contribution from the CNR. 
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Thermodynamics does not provide a physical mechanism for the transitions between 
non-equilibrium stationary states so that if a system is in a state of a relative maximum 
of the entropy, it would have no way of knowing that a state corresponding to the 
absolute maximum of the entropy exists. In order to invoke such a mechanism we 
have to take into consideration random thermal fluctuations. In order not to over- 
shadow the deterministic behaviour, the fluctuations must necessarily have a small 
intensity. Also, in order for them to affect the deterministic behaviour of the system, 
we must wait sufficiently long for there to be a non-vanishing probability for even rare 
events to occur. Some of these events will be more improbable while others will be 
less improbable. And it is precisely the latter which will determine the evolution of 
the system over infinitely long time intervals (Freidlin and Wentzell 1984). 

On account of the smallness of the random thermal fluctuations, non-equilibrium 
multistationary state transitions can be modelled as a positive, recurrent Markov chain 
(Wentzell and Freidlin 1970). We can argue that on account of the smallness of the 
fluctuations and the extremely large time interval considered, the system will spend 
an  overwhelmingly larger portion of its time in the immediate vicinity of a stationary 
state than between them. Non-equilibrium transitions appear as rare jumps and these 
jumps comprise the Markov chain. The pertinent transition probability estimates are 
due  to Wentzell and Freidlin (1970) to which we now turn our attention. 

2. Markov chain formulation of the Onsager-Machlup theory 

Consider a non-equilibrium process in R" which is described by the set of macroscopic 
rate equations: 

1, = b ( x , ) ;  xo = Y (2.1) 
withadrift vector b ( x )  = { b l ( x ) ,  b 2 ( x ) ,  . . . , b " ( x ) } .  Nearequilibrium,thelawofdetailed 
balance guarantees the uniqueness of thermodynamic equilibrium while far from 
equilibrium there may be more than one physically acceptable branch solution to the 
rate equations (2.1). The (stable) stationary states are a set of w-limit sets (Nemytskii 
and Stepanov 1960) of solutions x, to (2.1) as [+a. Let us assume that every limit 
set of (2.1) is found in one of a finite number of compacta K ,  ( i  = 1,. . . , 1 ) .  Since the 
non-equilibrium stationary states are stable, they will act as basins to the dynamical 
flow (2.1) and  correspond to states of relative entropy maxima. Some of these states 
will have a larger entropy than others and our problem is to predict the behaviour of 
the motion in large time intervals. 

Transitions from one stable compactum to another cannot occur along trajectories 
of the dynamical flow since the system must go 'against the flow', at least for some 
distance between the stable compacta. This necessitates the introduction of random 
thermal fluctuations which we model as Brownian motion. The perturbed process will 
then be described by the set of stochastic differential equations: 

X ,  = b ( X , )  + (2kL)"' W, ; XO=Y 

where kL is the molecular diffusion matrix and k is Boltzmann's constant. The reason 
for the appearance of k is that it will play the role of the small parameter regulating 
the size of the thermal fluctuations (Lavenda and  Santamato 1982). W, is a 'white' 
noise process which is the formal derivative of the standard n-dimensional Wiener 
process W = { W',  W', . . . , W"}. As kJO, the perturbed process X ,  will converge in 
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probability to x, and asymptotically ( X ,  - x,) will converge to a Gaussian process, 
analogous to the law of large numbers (Schilder 1966, Ellis and Rosen 1980, Lavenda 
1984). 

In the small-k limit, which we shall refer to as the 'thermodynamic' limit (Lavenda 
and Santamato 1982), it is more informative to take the thermal fluctuations into 
account implicitly rather than explicitly solving the stochastic differential equations 
(2.2) or their corresponding diffusion equations. In other words, we would like to 
obtain asymptatic estimates for the transition probability and stationary-limit distribu- 
tion that are valid in the small- k limit. This has been accomplished by Wentzell and 
Freidlin (1970) who generalised the Gaussian fluctuation theory of Onsager and 
Machlup (1953) to the small-k limit (Lavenda and Santamato 1982). We now need a 
Markov chain description of the Onsager and Machlup theory. 

The invariant probability measure of a Markov chain of events can be expressed 
in terms of the transition probabilities p ( i ,  j ) .  A well known method for solving for 
the invariant measure is the maximal directed tree graph method developed by Kirchhoff 
(1847). Let L denote the set of indices { 1,2, . . . , I } ,  each index corresponding to one 
of the compacta K, .  A maximal directed tree graph or { i}-graph consists of connecting 
the L vertices by arrows, m + n, such that m # n and m f i with precisely one arrow 
coming from each vertex other than i and there are no closed graphs. Let us designate 
the entire set of {i}-graphs by G{i}  and its elements by the letter g. Kirchhoff's method 
expresses the invariant probability measure p ( i )  of the ith vertex as the ratio of 
{ i}-graphs to the total maximal directed tree graphs, namely 

where P ( g )  denotes the product Il(,,,,,g p (  m,  n )  of individual transition probabilities, 

In the small-k limit Wentzell and Freidlin (1970) have estimated that the transition 
p ( m ,  n). 

m + n over a long time T converges to 0 with a rate: 

~ ( m ,  n )  exP[ - ( 1/2k)n(  Km, Kn 11 (2.4) 

R(y, x)  = inflfloT(d: Bo = y and fir = XI, 
where X denotes a logarithmic equivalence as k$O and 

(2.5) 

provided that y E K ,  and X E  K,. For perturbations of the white noise type, the 
functional no,($) coincides with the Onsager-Machlup functional: 

over smooth functions 6 that connect K ,  to K ,  on an arbitrarily long time interval T 
and 1) ll"L-1 denotes the quadratic form associated with the symmetric resistance matrix, 
L- ' .  

The Onsager-Machlup function (2.5) has been referred to as a 'quasi-potential' by 
Freidlin and Wentzell ( 1984). Using this, they introduce the following equivalence 
relation: 'if y and x belong to the same compactum, x - y, then R(y, x )  = n(x,  y )  = 0'. 
It is important to bear in mind that this equivalence relation is based on the asymptotic 
form of the dynamical flow (2.1), irrespective of the random thermal fluctuations. 
Moreover, the Onsager-Machlup function can take on values 0 CL( K,, K,)  c CO. If 
a( Km, K , )  > 0, then the compactum K ,  is judged to be stable. It is unstable when 
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fl(K,, K,)  = 0, implying that a transition to the stable compactum K ,  occurs with 
probability 1. Alternatively, if K ,  is stable and K ,  unstable, then we set fl(K,, K , )  = CO. 

The property that the Onsager-Machlup function be positive definite will shortly be 
converted into a realisability condition for a graph. 

In the kJO limit, we can therefore evaluate (2.3) with the aid of the probability 
estimate (2.4): 

(2.7) 

Now, on account of the smallness of Boltzmann’s constant, the main contribution to 
the sums in (2.7) will come from that graph which renders the Onsager-Machlup 
function a minimum. In an analogous manner to the Gaussian case, we can replace 
the average 

gcG{I )  exp(-(l /2k) ( m + n ) ~ 8  c a(Km,Kn)) 

exp( -(1/2k) min C fl(K,, K , ) )  := exp[-(1/2k)C(Kl)] 

by its most probable value: 

(2.8) 

in the limit as kJO. As a result, the invariant probability measure can be estimated as: 

g c G ( i J  ( m - n ) c g  

p ( i )  X exp{ - ( 1/2k)[@( K , )  - min C( K , ) ] }  (2.9) 
I 

in the limit as kJO. 
The single-step transition probabilities are estimated by the Wentzell and Freidlin 

expression (2.4) in the kJO limit. Since the process is Markov, the multi-step transition 
probabilities will simply be products of the individual transition probabilities (2.4). 
Now, in the kJO limit, Wentzell and Freidlin implicitly converted a maximal directed 
tree graph problem into a discrete optimisation problem by singling out some subset 
W of the state space chain such that the system will make a transition from some state 
i E L\ W, which is the complement of W, to a state j E W. Denote by G,( W) the set 
of such W-graphs. The normalised multi-step transition probabilities can thus be 
expressed as: 

in the limit as !cJO where @ ( K ,  K j )  is the correlational entropy: 

C(Ki,Kj):= min C R(K,, K, , ) .  
8 s G , , ( W  ( m + n ) ~ 8  

(2.10) 

The minimum of the correlational entropy (2.10) with respect to all initial states of 
transition gives us back the quantity defined in (2.8), namely, 

(2.1 1 )  C( K, )  = min C( K, ,  K , ) .  

In the thermodynamic limit, the Onsager-Machlup function can be decomposed 
into the difference between the ‘thermodynamic’ action, A, which is the time integral 
of the net rate of energy dissipation, and the difference in entropy between the end 
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states of transition (Lavenda 1977, Lavenda and Santamato 1982): 

( K,, K, ) = A ( K,, K, ) - [ S ( K, 1 - S ( K ,  )I. (2.12) 

In general, a difference in a function of state can always be extracted from the 
Onsager- Machlup function. However, in the general case of non-Gaussian fluctuations, 
the thermodynamic action loses its significance as being the time integral of the net 
rate of energy dissipation (cf Lavenda and Santamato 1981). According to the stability 
criteria given in terms of the Onsager-Machlup function, we have the realisability 
condition: 

A(Km, Kn) > S(Kn) - S(Km)  (2.13) 

for a transition from a stable compactum K ,  to a compactum K,. The realisability 
condition (2.13) states that the weight of an edge, A(K,,  K,) cannot be inferior to the 
entropy difference, S( K,)  - S( K,,,), of the two vertices which it connects. The additional 
entropy, implied by inequality (2.13) is generated by the statistical correlations between 
the two vertices. As T+w,  all physically realisable processes tend to 'forget' their 
past; in other words, the statistical correlations between the two states wear off in a 
sufficiently long interval of time. This leads to the interpretation of the correlational 
entropy (2.10) as the largest amount by which the thermodynamic action, or the time 
integral of the net rate of energy dissipation, can be decreased in a W-graph, (i.e. with 
fixed endpoints of transition), without violating the realisability condition (2.13). 

The thermodynamic action can now be shown to satisfy a classical Hamilton-Jacobi 
equation. To this end, let us assume that the drift field admits the orthogonal decompo- 
sition: 

(2.14) 

where the non-conservative vector field, U, satisfies the orthogonality condition 
(Wentzell and Freidlin 1970) 

u ( d S / d x )  = 0. (2.15) 

Since the transition probability (2.4) satisfies the Fokker-Planck equation to leading 
order in k, the decomposition of the Onsager-Machlup function (2.12) implies that 
the thermodynamic action will satisfy the classical Hamilton-Jacobi equation: 

b i x )  = L(dS/dx)  + u ( x )  

dA( K,, x)/dT++JldA(K,, x ) / ~ x  + B l l i - ' P ( ~ )  = 0 (2.16) 

where the non-conservative external force field B = ( L - ' ) u  and 'P is known as the 
'generating' function (Landau and Lifschitz 1969): 

W X )  = ;llb(x)ll;-~, (2.17) 

which is a state-dependent dissipation function (Onsager and Machlup 1953, Lavenda 
1978). The continuous variable x assumes values only in the domain of attraction of 
the stable compactum, K,. As T + 00, the thermodynamic action tends to a stationary 
value which is the solution of the time-independent equation: 

$lldA(K,, x ) / ~ x +  B ( x ) l l ; - ' P ( x )  = O .  (2.18) 

In the asymptotic time limit, the statistical correlations between the two states have 
had ample time to have worn off. This is confirmed by the solution: 

A"( K,, X)  = S( K , )  - S(X) (2.19) 



298 B H Lavenda 

to the time-independent Hamilton-Jacobi equation (2.18). On the strength of the 
decomposition of the Onsager-Machlup function (2.12), the asymptotic solution (2.19) 
implies that the correlational entropy (2.10) reduces to: 

C O (  K,, x )  = 2 [ S (  K , )  - S(x)] (2.20) 

in the asymptotic time limit. We shall refer to (2.20) as the ‘static’ correlational entropy 
in order to distinguish it from the ‘dynamic’ correlational entropy (2.10) which accounts 
for the statistical correlations between states of the Markov chain that are not well 
separated in time. In the next section, we shall show that it is the correlational entropy 
and not the entropy in the general case that determines the state in which the invariant 
probability measure tends to concentrate in the thermodynamic limit. 

3. Multistationary state evolutionary criteria 

We shall consider an example in one dimension which follows Freidlin and Wentzell 
(1984). The reason for considering the one-dimensional case is that it allows an explicit 
calculation to be made. In the one-dimensional case, the non-conservative velocity 
field is superfluous and it suffices to consider the case where the entropy is the potential 
for the drift, b. 

Suppose that the entropy curve has the form shown in figure 1 where the units are 
entirely arbitrary. States 1, 3, 5 correspond to relative maxima in the entropy, corre- 
sponding to stable compacta. In addition, state 5 is allowed to ‘communicate’ with 
state 1 directly since the manifold consisting of the interval 0 to 6 is closed into a circle 
(Freidlin and Wentzell 1984). 

S i x )  

- 
0 

c 
1 2 3 4 5 6  

X 

Figure 1. 

If we were to ask where the invariant probability measure tends to concentrate in 
the limit as kJO, the maximum entropy formulation would indicate state 3 since it 
corresponds to the absolute maximum of the entropy. We now show that this example 
contradicts this conclusion and in the following example show why it does. 

The minima of the correlational entropy are determined by the minimisation of 
the correlational entropy (2.10) with respect to the initial state of the transition. This 
will give us the minimal correlational entropy (2.1 1) which determines the invariant 
probability measure according to (2.9) in the limit as kJO. The curve @(x)  in each of 
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I1 i 

the domains of attraction of the stable stationary states is the sum of the dynamic 
correlational entropy for the transition to the stationary state and the static correlational 
entropy (2.20) for a spontaneous fluctuation to other states x in its domain of attraction, 
namely, 

C(x)  = min @ ( K , ,  K,)+Co(K,, x )  (3.1) 

where x assumes values in the domain of attraction of the stable compactum K,. In 
other words, the static correlational entropy is related to the probability of a spon- 
taneous fluctuation from the stationary state which cannot occur along a trajectory of 
the deterministic motion (2.1). The relation between Co(x) and Einstein's formula for 
the probability of a spontaneous fluctuation from a non-equilibrium stationary state 
in terms of the entropy decrease should be appreciated. The graphs which have the 
minimal correlational entropies for the stable stationary states 1,  3, and 5 have a 
rectangle drawn around them in figure 2. The minimal correlational entropies for these 
states are C( 1) = 18, @(3) = 24, and C ( 5 )  = 28. Subtracting from (3.1) its minimum, 
namely min, @ ( K c )  = C( l ) ,  and  calling this normalised quantity @*(x) (i.e., normalisa- 
tion with regard to the expression for the invariant probability distribution (2.9)), we 
find that: 

I 

@*(x) = 18-2S(x) 

@ * ( ~ ) = 2 8 - 2 S ( ~ )  

C*(X) = 30-2S(x) 

for O G  x s 2 

for 2 < x G 4 

for 4 <  x s 6. 

The curve C*(x), in figure 3, shows the unexpected and surprising fact that the 
absolute minimum of @*(x)  coincides with state 1 rather than state 3 which is the 
absolute maximum of the entropy. Apart from the fact that the height of the barrier 
which separates any two stable stationary states is determined by the statistical correla- 
tions and thermodynamics cannot tell us how high the barrier is, the example violates 
the principle of microscopic reversibility: 

p ( i , j ) c L ( i )  = d j ,  i ) c L ( j )  (3.2) 
for the transitions 1-5. 
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In the limit as kJ0, the principle of microscopic reversibility (3.2) can be stated as: 

A(  K ,  K, ) - A(  K,, K ,  1 + 2[S( K ,  1 - S( K, )I = ( K ,  1 - a= ( K ,  ) (3.3) 

where we have made use of (2.4), (2.9), and (2.12). The question is under what condition 
will (3.3) be valid. The principle of microscopic reversibility states that, under equi- 
librium conditions, any molecular process and the reverse of that process will be taking 
place on average at the same rate (Tolman 1938). To see what this implies, let us 
consider the corresponding continuous diffusion process. Let ~t denote an  arbitrary 
path on the time interval [ T ,  s t s T2] and  let 0: be the reverse of this path on the 
interval [- T2 t c - T,] .  On the one hand, the thermodynamic action along the forward 
path of the motion is: 

r r  

where @(at) = illatilt-i is the Rayleigh-Onsager dissipation function which is a 
homogeneous second-order function of the velocities. The last term in (3.4) is the net 
rate of working of the external forces, II:= Bi,. On the other hand, along the time 
reversal path a?, we have: 

A-r2-r,(0*) = I-” [@(a:) + W07) - B&] d t  
- r2 

(3.5) 

Only in the case where the non-conservative force field vanishes will 

AT, = A- 7:- 7, (@*I ( B 0) (3.6) 

A ( K ,  K,) = A(K,, K ) .  (3.7) 

C ( K , ) - @ ( K )  = 2 [ S ( K ) - S ( K , ) l .  (3.8) 

hold or in terms of our discrete Markov chain: 

This implies that the condition for microscopic reversibility (3.3) is really given by: 

showing that the invariant probability measure tends to concentrate on the absolute 
maximum of the entropy in the thermodynamic limit as kJO. The relaxation time T,, 

for the transition j -  i is: 

T,, = : e x p { ( l l k ) [ S ( K , ) - S ( K , ) I } .  (3.10) 

We can verify the foregoing result by allowing the entropy of state 6 in our example 
tend to zero so that states 0 and 6 become identical, as shown in figure 4. The maximal 
directed graphs which minimise the correlational entropy are shown in figure 5. The 
normalised minimal correlational entropy curve, 

C*(X) = 2 2 - 2 S ( x )  for 0 s  x < 6 

in figure 6, shows that the principle of minimal correlational entropy coincides with 
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\ 
2 2  22 

2 0  

10 

* 

T 
0 1 2 3 i 5 6  

X 

1 i, 
1 L 
1 /i 3 

A 
1 3 

A 
1 3 

1 A 3 

Figure 4. Figure 5. 

0 1 2 3 4 5 6  
X 

Figure 6. 

maximum entropy in predicting that the invariant probability measure tends to concen- 
trate in state 3. 

Therefore, the principle of minimal correlational entropy will give the same predic- 
tion as the maximum entropy formulation only when microscopic reversibility holds 
and  the non-conservative force field B vanishes identically. In our one-dimensional 
case, the ‘discontinuity’ in the end conditions, in figure 1, actually leads to a breakdown 
in microscopic reversibility which would occur in a multi-dimensional case in the 
presence of an  external, non-conservative force field. In both cases, the principle of 
minimal correlational entropy gives the correct results whereas only in the potential 
case, where the microscopic reversibility holds, do  the two coincide. 

4. The principle of minimum dissipation of energy 

With the decreasing size of Boltzmann’s constant, the correlational entropy must 
likewise diminish so that in the limit as kLO, the phenomenological laws of non- 
equilibrium thermodynamics emerge. In  this limit, the set of G,,( W) of W-graphs 
shrinks to a single ‘critical’ graph consisting of a single, unstable transition from one 
compactum, K , ,  to another, K,, where the system will remain for ever after. The 
transition is unstable since n( K,,  K,) vanishes and hence will occur with probability 
I .  The critical graph corresponds to the most probable behaviour which is governed 
by the macroscopic rate equations (2.1) and therefore lies beyond the domain of validity 
of the Markov chain description. The ‘freezing-in’ of the system into a stable compac- 
tum, K,, is a manifestation of the diminished importance of random thermal fluctuations 
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in creating a diffusion ‘against the flow’. In contrast to our perspective in B 2, where 
we have given the system ample time to evolve to within any arbitrary small neighbour- 
hood of the stationary state which became our initial condition, we now consider the 
system to be initially perturbed from a given stationary state. The asymptotic behaviour 
is again determined by the stationary value of the thermodynamic action which is the 
solution to equation (2.18). Since we are considering the relaxation of the system to 
the given stationary state, we find that the asymptotic form of the thermodynamic 
action will be given by the entropy difference of the final and initial stationary states. 
The static correlational entropy vanishes and  we regain the thermodynamic evolutionary 
criterion based on the entropy difference of the two stationary states. 

For the proof of these statements, it suffices to consider the Onsager-Machlup 
approximation for the corresponding Markov diffusion process. On the strength of 
the orthogonal decomposition of the drift, (2.14), the Onsager-Machlup functional 
can be written as (cf (3.4)): 

(4.1) 

where the thermodynamic Lagrangian 

L(@, $1 = 0 ( i ) + V ( 0 )  - r I ( i )  (4.2) 

is the net rate of energy dissipation in the system. By virtue of the fact that R is 
positive semi-definite, 

L(0, i) 3 S ( i )  (4.3) 

which is our ‘realisability’ condition in the continuous limit. In contrast to inequality 
(2.13), we now have the possibility for an equality without violating the stability 
properties. In other words, in the thermodynamic limit, the vanishing of the Onsager- 
Machlup functional is not related to an instability criterion. 

In the thermodynamic limit, the principle of minimal correlational entropy trans- 
forms into the unconstrained principle of least dissipation of energy (Lavenda 1978): 

In contrast to the discrete, global variational principle (2. I O ) ,  the continuous, local 
variational principle (4.4) employs the thermodynamic convention of varying the 
velocities for a fixed configuration of the system (Onsager 193 1). In terms of an analogy 
with graph theory, we can say that whereas (2.10) is analogous to a ‘shortest path’ 
problem, (4.4) is analogous to an ‘extremum flow’ problem in network theory for which 
inequality (4.3) acts as the ‘capacity’ constraint (cf Bondy and Murty 1977). 

The minimum dissipation of energy occurs along path 3 which is a solution of the 
non-equilibrium phenomenological equations: 

(4.5) 

The inner product of (4.5) with the velocity vector, j, gives the thermodynamic power 
relation: 

L-’[3, - U ]  = (dS/dk?). 

2 0 4 )  -I](& = S(d). (4.6) 

In addition, the sum of the inner products of (4.5) and  the orthogonal components of 
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the drift vector is: 

2 W 3 )  -rI(3) = m. (4.7) 

O(3) = W3) (4.8) 

Upon comparing the two power relations, we obtain: 

which is the dissipation balance condition that determines a family of optimal paths 
subject to given boundary conditions (Lavenda and Santamato 1982). Introducing the 
optimal path 3 into the principle of minimum dissipation of energy, (4.4), we find 

D ( j )  = 0 (4.9) 

and on dccount of (4.3), this is its absolute minimum. 

entropy. The Onsager-Machlup functional 
The optimal path 3 is, in addition, characterised by a vanishing correlational 

no,(@) = & T ( B ) - [ S ( B T ) - S ( B O ) I  (4.10) 

vanishes along 3 since the dissipation balance condition (4.8) and the thermodynamic 
power relation (4.6) imply that the action functional reduces to a difference in a 
function of state, namely, 

= 5:[20(bl)  -Wii) l  d l  

= S ( B , )  - S(fl0). (4.1 1) 

This, in turn, implies that the correlational entropy (2.10) vanishes since 

(4.12) 

for the critical graph k This critical graph can now be appreciated as the discrete 
state space analogue of the optimal path 3 for the regression of a fluctuation. It is 
‘critical’ insofar as it violates the realisability condition (2.13). Yet, we must bear in 
mind that we are at the limits of a probabilistic theory where ‘most probable’ events 
become ‘certain’ events. The evolutionary criterion reduces to determining the entropy 
differences of the stationary states in the absence of a non-conservative force field B. 
In fact, in the presence of small thermal fluctuations, which drive the system out of 
any bounded domain in a long enough period of time, the principle of minimal 
correlational entropy reduces to a minimum relative entropy principle for stochastic 
exit when B = 0. 

5. The minimum relative entropy principle for stochastic exit 

We can now approach the problem of stochastic exit from our time reversal Markov 
chain description which is valid for systems in which microscopic reversibility holds. 
It is now assumed that the system has had ample time to have evolved to within an 
arbitrarily small domain of one of a finite number of stable compacta, K , ,  K 2 , .  . . , Kl. 
The presence of unstable compacta will not alter our results since they can only increase 
the thermodynamic action or, at least, leave it unchanged. 
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Suppose that several of the compacta are found in a domain D with a smooth 
boundary dD which we assume does not intersect with any of the compacta in D. 
Now, the system cannot leave D along any trajectory of the dynamical flow (2.1) since 

b ( Y )  * n ( y ) < @  for all y E aD (5 .1)  

where n is the outward normal to aD. Nevertheless, on account of small thermal 
fluctuations, the system will leave any bounded domain containing a multiplicity of 
stationary states sooner or later. In the thermodynamic limit, this will occur in the 
most likely way. The problem we are faced with is to determine the most likely path 
to the boundary and the place where exit is most likely to occur. 

Evaluating the Onsager-Machlup functional on the reverse path: 

we find that it will be equal to 

(5 .3 )  

only when II = 0. The principle of least dissipation of energy for an  optimal path of 
the reverse motion is 

D*(@) = min[L(a, 4 )  + S ( S ) ]  (5.4) 
B 

which is the mirror image in time of the principle of least dissipation of energy for a 
path of the forward motion, (4.4). The extremum of the integrand in ( 5 . 2 )  occurs along 
the path d which is a solution o f  

L-’d  = - (as/ad) ( U E O ) .  ( 5 . 5 )  

The inner product of (5.5) with the velocity vector gives the power relation: 

2 0 ( $ )  = -S($) 5 0 ( 5 . 6 )  

where the inequality follows from the positive semidefiniteness of the dissipation 
function 0. Hence, the laws of non-equilibrium thermodynamics predict a negative 
entropy production along d. In the presence of small thermal fluctuations, this should 
be interpreted in a probabilistic sense in that such types of the motion are highly 
improbable. Yet, the path d will be less improbable than other paths. 

The extrema1 path d satisfies the dissipation balance relation (4.8). Along this path, 
the dissipative energy flow (5.4) vanishes and  this, in turn, implies that the Onsager- 
Machlup functional (5.3) vanishes. Also, because it is positive semidefinite, 

nT,,(a) 3 2 [ W T , )  - S(a,)l= n,,(d). ( 5 . 7 )  

The symmetry in the most probable paths for forward and reverse motions, in the 
thermodynamic limit, is now apparent: along the optimal path 3 the Onsager-Machlup 
functional for the forward motion vanishes and  

(5.8) 

while along its mirror image in time, 3, the Onsager-Machlup functional for the reverse 
motion vanishes and ( 5 . 7 )  applies. 

a-T2-T!(o*) 3 2[S(o-,) - S k - T , ) ]  = a - T 2 - T J &  
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The system must have surely been at some stationary state in some distant time in 
the past. Suppose that for TI + -m, the system is found in compactum Ki and a 
trajectory is launched at some point x E K,. Denote by i ( x )  the index of the compactum 
and let 1 denote the set of all indices of the (stable) compactum in D. Suppose that 
there exists a unique state y ,  E aD for each i E 1 such that: 

n ( x ,  y )  = min A(x, y )  + S(x)  --ax S ( y )  ( X  E Ki), (5.9) 

then this state will possess maximum entropy. This constitutes a minimum relative 
entropy principle for stochastic exit. Along the extrema1 path: 

y e d D  y e n D  

minA(x, y )  = S(x) --ax S ( y )  
~ E R D  y e a D  

(5.10) 

and the Onsager-Machlup function reduces to twice the minimum entropy difference. 
Let us now consider this in greater detail. 

We now enlarge the index set L to include points a on the boundary. A a-graph 
consists of a sequence of arrows leading from any stable compactum to a state d on 
the boundary. The minimal correlational entropy is (cf (2.10)): 

@(x,d)=  min Cl(&, K,)  (x E K ) ,  (5.1 1) 

where G,{d} is the set of &graphs which start in compactum K,. Since the system must 
overcome the dynamical flow to reach the boundary, the entropy on the boundary 
cannot be greater than the entropy of compactum Ki. Consequently, there is no 
realisability condition for a-graphs. In other words, &graphs do  not fall in the domain 
of validity of non-equilibrium thermodynamics since there is no deterministic lower 
bound to the energetics of the process. In fact, the macroscopic laws negate the 
possibility of such a process occurring. 

The absolute minimum of the sum in (5.1 1 )  occurs along the critical %graph. This 
critical ;-graph is the discrete state space analogue of the optimal path 2. The ;-graph 
has a minimal correlation entropy which is twice the minimum entropy difference: 

g ~ G , ( d )  ( m + n l ~ g  

~ ( x ,  ;) = 2 [ ~ ( x )  --ax ~ ( y ) ]  ( x  E Kl) .  (5.12) 
y E d D  

It consists of a single, unstable transition from the state x, belonging to the stable 
compactum K,, to the state of maximum entropy on the boundary. The minimisation 
of (5.12) with respect to the initial state gives (cf (2.1 1)) 

which in view of (2.8) shows that (5.12) is none other than Boltzmann’s principle which 
determines the invariant probability measure in terms of the entropy difference. 

The a-graphs for which 

(5.14) 

is attained are, with probability tending to 1 as kJO, such that the last arrow, in the 
sequence of arrows leading from i ( x )  to a, lies in a small neighbourhood of the state 
y ,  that possesses maximum entropy. Furthermore, if we delete the last arrow, j + a, 
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we obtain a j-graph whose sum cannot be superior to (5.14): 

min 1 A(&, K n ) a  min A ( K , ,  IC,,). (5.15) 

Since the equality holds for the absolute minimum of (5.14), which is one-half the 
correlational entropy (5.12), and the right-hand side of (5.15) cannot be inferior to 
[S(x) - S(K, )] ,  it follows that: 

g e G , ( d )  ( m - n ) E g  g e G , b )  ( m - n ) e g  

S(K, )  2 max S ( y ) .  (5.16) 

Since this inequality must be true for all j ,  we conclude that the system will not make 
trips to neighbourhoods of those compacta which have an entropy strictly inferior to 
the maximum entropy on the boundary in the limit as kJO. 

In conclusion, we consider the case where there is no unique state on the boundary 
with maximum entropy and/or  where there is more than one distinguished &graph 
which minimises the correlational entropy. Let J(i) denote the set of all states j in 
the final transition to the boundary, j +. d. It is apparent that by deleting this last arrow 
and replacing it by j + k + a,  we cannot obtain a sum less than (5.14) since according 
to the triangle inequality we have: 

(5.17) 

The only way that the sum cannot exceed the original one is when the equality holds. 
For then the existence of such a minimising &graph would mean that k E J( i ) .  This 
requires us to replace the single state of maximum entropy by the set UfE,(I) a, which 
possesses maximum entropy. In fact, Wentzell and Freidlin (1970) prove that the 
trajectory of the process, which is launched from any point x E 0, will reach the 
boundary in a small neighbourhood of the set 8, with a probability tending to 
one as kJO. We have shown that this set is characterised by maximum entropy provided 
microscopic reversibility holds. This then constitutes a minimum relative entropy 
difference for stochastic exit when there is not a unique state of maximum entropy on 
the boundary. 

y a d D  

A(K,,  & ) + A ( & ,  3) 2 A(K,,  8). 
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